
Sharing and organizing research products as R packages
Matti Vuorre1 & Matthew J. C. Crump2

1 Oxford Internet Institute, University of Oxford, United Kingdom
2 Department of Psychology, Brooklyn College of CUNY, New York USA

A consensus on the importance of open data and reproducible code is emerging. How should
data and code be shared to maximize the key desiderata of reproducibility, permanence, and
accessibility? Research assets should be stored persistently in formats that are not software
restrictive, and documented so that others can reproduce and extend the required computations.
The sharing method should be easy to adopt by already busy researchers. We suggest the
R package standard as a solution for creating, curating, and communicating research assets.
The R package standard, with extensions discussed herein, provides a format for assets and
metadata that satisfies the above desiderata, facilitates reproducibility, open access, and sharing
of materials through online platforms like GitHub and Open Science Framework. We discuss
a stack of R resources that help users create reproducible collections of research assets, from
experiments to manuscripts, in the RStudio interface. We created an R package, vertical, to help
researchers incorporate these tools into their workflows, and discuss its functionality at length
in an online supplement. Together, these tools may increase the reproducibility and openness of
psychological science.

Keywords: reproducibility; research methods; R; open data; open science
Word count: 5155

Introduction

Research projects produce experiments, data, analyses,
manuscripts, posters, slides, stimuli and materials, computa-
tional models, and more. However, the potential added value
of these products is not fully realized due to limited sharing
and curating practices. Although more transparent commu-
nication of these research products has recently been encour-
aged (Houtkoop et al., 2018; Klein et al., 2018; Lindsay,
2017; Martone, Garcia-Castro, & VandenBos, 2018; Rouder,
2016; Rouder, Haaf, & Snyder, 2019; Vanpaemel, Vermorgen,
Deriemaecker, & Storms, 2015; Wicherts, Borsboom, Kats,
& Molenaar, 2006), these efforts often focus narrowly on
sharing data (and sometimes analysis code). Further, the prac-
tical value of sharing is often limited by poor documentation,
incompatible file formats, and lack of organization, result-
ing in low rates of reproducibility1 (Hardwicke et al., 2018).
Standardization of protocols for sharing would be beneficial;
but, such standards have not emerged, possibly due to the
variance of research in psychology. Instead of developing
another standard, we suggest borrowing existing standards
and practices from software engineering. Specifically, the R

The authors declare equal authorship. MV is funded by the Ado-
lescent Well-Being in the Digital Age project funded by the Huo
Family Foundation.

Correspondence concerning this article should be addressed to
Matti Vuorre, 1 St Giles, Oxford OX1 3JS, United Kingdom. E-mail:
matti.vuorre@oii.ox.ac.uk

package standard, with additional R authoring tools, provides
a robust framework for organizing and sharing reproducible
research products.

Some advances in data-sharing standards have emerged: It
is becoming more popular to share data on the Open Science
Framework (OSF). However, those materials often contain
idiosyncratic file organization and minimal or missing doc-
umentation for raw data. In specific areas, organization and
documentation standards have emerged, (e.g., the BIDS frame-
work in neuroscience, Gorgolewski et al., 2016), but they
usually only consider data and code instead of the project as
a whole. More comprehensive proposals are described in the
Transparency and Openness Promotion (Nosek et al., 2015),
and Peer Reviewers’ Openness initiative guidelines (Morey et
al., 2016), but these fall short of describing detailed standards
for organization and metadata. Additionally, these standards
(if they exist) may not be widely known, recognized, agreed
upon, and/or adopted at large.

We sought a standard for organizing and sharing that would
adhere to the FAIR (Findable, Accessible, Interoperable,
Reusable) guidelines to maximize the reuse potential of
data and support “discovery through good data management”
(Wilkinson et al., 2016, see also general discussion). Addi-
tionally, we recognized the added value of including other re-
search outputs (“products”; e.g., manuscripts) beyond datasets

1By “reproducibility”, we mean computational or analytic repro-
ducibility by which previous results can be reproduced using existing
data. Contrast this to “replicability”, in which entire procedures are
repeated to generate new data to test a scientific idea.



2 MATTI VUORRE1 & MATTHEW J. C. CRUMP2

in a reproducible collection of materials. We identified the
R package standard with modern online-based workflows as
a solution that doesn’t present overwhelming overhead for
already busy researchers. Here, we discuss the R package
standard for creating reproducible research material contain-
ers for data, analysis code, and metadata. Then, we introduce
additional R packages for incorporating other research prod-
ucts into the reproducible container. These additional tools
are easily accessible through our vertical package, thus named
because an entire research project can be completed from top
to bottom as a stack of R processes from within the RStudio
software platform.

R Packages

R is a programming language for statistical analyses (R Core
Team (2020); https://www.r-project.org), and RStudio is its as-
sociated integrated development environment (IDE; RStudio
Team (2016); https://www.rstudio.com/). Both are free, open
source and work on Windows, Mac, and Linux systems. These
tools are already widely used among psychology researchers:
In one crowd-sourced analysis, 16 of 29 analysis teams used
R (Silberzahn et al., 2018), and many psychologists have
already developed R packages (see also Yee & Debbie, 2017,
and http://r4stats.com/articles/popularity/).

A cornerstone of R are user-created packages, which contain
functions, (meta)data, and documentation in a standard for-
mat that allows seamless sharing across users and operating
systems. Data and functions in R packages are immediately
available to others through the R console, and documentation
can be viewed in R or online. We first outline how data
and functions are included in R packages, and then turn to
including other assets, such as manuscripts and posters. A
complete guide to R packages is outside our scope (see Wick-
ham (2015)).

When an R package is created as shown in Figure 1, the re-
quired files and directories are automatically created. At this
point, the package can be installed (click “Install and Restart”
in RStudio’s “Build” tab) and shared online (see below). How-
ever, to make it useful, content needs to be added, beginning
with the package’s description. That information (e.g., au-
thors, dependencies) is written in the “DESCRIPTION” file in
a machine readable format. To edit that file, click on its name
in RStudio’s File browser. The “blank.Rproj”, “man” and
“NAMESPACE” files/directories shown in Figure 1 should
not be edited by users, and we thus turn to R functions.

Functions

Researchers often develop and use custom functions in their
analysis. Although it is possible to declare them directly in
the analysis scripts, we suggest declaring functions using the
R package standard, by placing the function’s source code
into a file in the “R” directory. That directory is automatically

created (see Figure 1). Functions in R packages are portable,
such that others can install the package from their R console,
load it, and start using the functions immediately. Packages
can also depend on other packages (and be depended on),
such that R automatically installs any requirements for your
functions to work appropriately. Functions within R packages
are documented in a standardized manner, and the documen-
tation for a function can be viewed in R (e.g. try ?mean) or
online.

Wrapping packages also provide a reuse benefit: Functions
can be difficult to find in old scripts, but easy to find and load
if they are called from an existing package. Thus, formally in-
cluding one’s functions in R packages facilitates reproducibil-
ity and sharing.

Data

Broadly, there are 3 steps to including data in an R package:
1. placing raw data in the “data-raw” directory, 2. creating
an R script that processes the raw data and creates an R data
object into the “data” directory, and 3. documenting the final
data object.

First, raw data in any format is stored in the “data-raw” direc-
tory to ensure that the method of sharing remains software-
agnostic. If possible, that raw data should be in a text based
format, rather than proprietary formats such as SPSS files.
Second, instructions for converting and cleaning the raw data
into analyzable format should also be included in this direc-
tory (the raw data files should not themselves be modified).
These pre-processing steps should be saved so that the com-
plete path from raw data to results is transparent and repro-
ducible, preferably in an R script in the “data-raw” directory.
That script should end with creating an R data object in the
“data” directory. Placing the R data object there ensures that
it is included in the resulting R package, which makes using
the data effortless for any R user, and eschews the need to
download additional files. Loading the R package makes the
included data immediately available in the R console.

Finally, the resulting data object in “data” should be doc-
umented in a standardized format by placing a data.R
file in the “R” directory, a process discussed in more de-
tail in our complete online supplementary tutorial (https:
//crumplab.github.io/vertical/), and in Wickham (2015). That
standard format of documentation is especially useful because
it allows datasets’ documentation to be viewed in R (e.g., type
?attitude in the R console) and online (see below).

R packages thus provide a useful standard for functions and
(meta)data. However, as we will see, the package structure
can be extended to include analyses, manuscripts, posters,
and presentations as well. The complete project is then easily
shared online, and even showcased as a website, as we will
show below. To enable these additional features, many R

https://www.r-project.org
https://www.rstudio.com/
https://crumplab.github.io/vertical/
https://crumplab.github.io/vertical/


RESEARCH PRODUCTS AS R PACKAGES 3

Figure 1. Creating an R package using the RStudio graphical user interface.

packages have been developed (e.g., writing manuscripts with
R). To facilitate their use, we have created an R package, ver-
tical, that, when installed, also installs these other packages,
and makes it easier to create projects that use them.

Reproducible research projects with vertical

vertical extends the R package template with a set of addi-
tional files and directories for products such as manuscripts
and posters. These assets are organized such that they can
be easily shared online on GitHub or OSF, installed to R
as a package, and showcased online as a website. Figure 2
illustrates the workflow of creating a vertical research project.

Additional benefits of packaging everything together in this
manner are that the computations supporting manuscripts, sup-
plementary analyses, data preprocessing, etc. are reproducible
and use the same data in the same computational environment.
Because sharing of materials is built-in, no additional work
is needed after-the-fact in organizing the materials for shar-
ing. We begin with an overview of this process, but a more
exhaustive step-by-step tutorial is provided online (Crump
& Vuorre, 2020)2. Before using vertical, or any packages
contained therein, users must first install it in R (the devtools
(Wickham et al., 2020) package is necessary for installing R
packages from GitHub):

install.packages("devtools")
devtools::install_github("CrumpLab/vertical")

Users should then restart RStudio to make the features avail-
able. A new vertical research project is created through RStu-
dio (Figure 3.1). Figure 3.2 shows the resulting file and
directory structure, which is an extension of the R package
structure shown in Figure 1. Users may enable or disable
components as needed, either by (un)checking boxes (Figure

3.1) or adding/deleting files/directories. Next, we describe
the components, and then how to share the resulting research
projects and showcase them as websites.

In addition to data and functions, almost any kind of content
can be included within the project. Most importantly, to cre-
ate reproducible assets, such as data analyses or manuscripts,
these materials should be created with R Markdown, a sim-
ple language that allows mixing prose with code (R, Python,
etc.), and thus enables including one’s text and analyses in a
single document. Because of its importance, we describe R
Markdown first.

Reproducible documents with R Markdown

R Markdown allows executable code snippets to be embedded
alongside regular text, and simple markup for formatting code
(e.g headers using #s; Xie, Allaire, and Grolemund (2018)).
R Markdown documents are transparent and reproducible. In
principle, recipients can see the analysis scripts, and repro-
duce them by compiling the document on their own machine.
R Markdown documents separate content and style, and can
be compiled to multiple output formats, such as PDF, HTML,
and Word. Importantly, R Markdown is plain text, and thus
effortless to learn. Nevertheless, a tutorial on R Markdown is
beyond our scope (see Xie et al., 2018)3.

Data analysis

Data analysis can be made fully transparent and reproducible
with R Markdown. Above, we suggested placing any pre-
processing steps in a separate file in the “data-raw” directory,

2https://crumplab.github.io/vertical
3See also https://rmarkdown.rstudio.com/authoring_quick_tour.

html for a quick overview of R Markdown.

https://crumplab.github.io/vertical
https://rmarkdown.rstudio.com/authoring_quick_tour.html
https://rmarkdown.rstudio.com/authoring_quick_tour.html


4 MATTI VUORRE1 & MATTHEW J. C. CRUMP2

Figure 2. An overview of the vertical workflow. The project template suggests R Markdown modules for asset creation
(manuscripts, slides, posters), that are compiled to multiple formats. Content is curated follow R package standards, then
compiled and communicated in the form of an online repository (GitHub/OSF), project website, and R package.

and creating a documented R data object in “data”. If the
data object is called mydata and the package is installed and
loaded, calling mydata in R will call the data object, ready
to be used in analyses. Our favored approach is to write any
analyses relevant to a product (e.g., manuscript or a poster)
directly into the product’s R Markdown source file. Typically,
we would include data analysis code in the R Markdown
source of the APA style manuscript (see below).

Nevertheless, sometimes supplementary analyses are con-
ducted that are not included in any other document. These
are most conveniently placed in R Markdown files into the
“vignettes” directory. Then, when the project is compiled into
a website (see below), those analyses are viewable as part of
the resulting website. When a vertical project is created, the
“vignettes” directory is automatically created with an example
data analysis R Markdown script.

APA manuscripts

Reproducible APA formatted manuscripts can be created with
the papaja R package, that provides an R Markdown template
file, and additional helper functions for creating tables and
figures (Aust & Barth, 2020). For example, the R Markdown
file can contain the text and code to generate the manuscript

and all results. papaja provides several functions for reporting
results: For example, papaja’s apa_print(model) embeds
model’s statistical results directly into the manuscript, obviat-
ing the need to copy them by hand and removing human error
in reporting. References can be automatically added from
Zotero using the citr plugin (Aust, 2019). We refer readers
to the papaja documentation website for more information.4

When a new vertical project is created, a papaja manuscript
template is automatically included in the “manuscript” direc-
tory. Then, once the project is compiled, the manuscript PDF
is copied to the “docs” folder, from where it can be viewed as
part of the resulting website (see below).

Posters

vertical includes a posters folder where poster documents can
be deposited and shared. vertical suggests using the poster-
down package (Thorne, 2019) for poster creation through an
R Markdown document. When the provided template is used,
the resulting reproducible document is viewable as part of the
website.

4https://crsh.github.io/papaja_man/introduction.html

https://crsh.github.io/papaja_man/introduction.html


RESEARCH PRODUCTS AS R PACKAGES 5

Figure 3. Creating a vertical project in RStudio (1), and description of the file structure of a vertical project (2).

Slides

vertical includes a slides directory for slide decks in any for-
mat, which can then be included for downloading or viewing
on the resulting website. There are several R Markdown op-
tions for creating reproducible slide decks in various formats.
When a new vertical project is created, a slidy template is
included to create web-ready presentations.5 Slidy presen-
tations are viewable in a browser like typical PowerPoint
or Keynote presentations, but have additional features like
scrollable slides, interactive figures, and animations.

Other materials

Other research assets may include supplementary materials,
stimulus sets, code for a computational model, additional anal-
yses, or other documents, such as blogs. Additional assets
can be included by creating files in appropriate directories,
and linking them to the resulting website (see below). For
example, arbitrary R Markdown documents can be included
in the vignettes directory. When the project is compiled (see
below), R Markdown files in that directory are automatically
compiled and served on the website (see Wickham and Hes-
selberth (2020)).

Experiments

Finally, experiments should be placed in the experiments
directory. They could be packaged as a compressed .zip file,
which would then be accessible from an online repository. ver-
tical suggests using jsPsych (De Leeuw, 2015), a JavaScript
library for building browser-based experiments that can be
served to the web or run locally. Selecting the jsPsych module
during project initialization downloads the most recent version
of jsPsych to the experiments folder. A basic HTML template
is also provided, which loads the jsPsych library and presents
some basic word stimuli. To further edit the experiment, users
can simply edit the HTML file as they would when creating
any other jsPsych experiment. When the vertical project is
compiled, the experiment is available on the project website.

For working entirely with R Markdown, we suggest jspsychr,
an R package that helps creating jsPsych experiments with
R Markdown in RStudio (Crump, 2019).6 RStudio enables
passing objects between R and JavaScript, making this an at-
tractive option for experienced R users. The template creates
a sample jsPsych experiment produced by jspsychr, which
contains the R Markdown script to generate the experiment

5https://bookdown.org/yihui/rmarkdown/slidy-presentation.
html

6https://crumplab.github.io/jspsychr/

https://bookdown.org/yihui/rmarkdown/slidy-presentation.html
https://bookdown.org/yihui/rmarkdown/slidy-presentation.html
https://crumplab.github.io/jspsychr/


6 MATTI VUORRE1 & MATTHEW J. C. CRUMP2

file, the html file to run the experiment, and a folder to save
the data and document the experiment.

Browser-friendly experiments have several benefits. First,
scripts are open-source and easy to use and share (no installa-
tion is required to run an experiment). Scripts can be shared
in a self-contained manner such that the experiment is repro-
ducible and the methods are transparent and verifiable. Third,
because the experiment is an HTML file it can be shared and
run as part of the project website, facilitating understanding
of the experimental procedures. Sharing experiment source
code with a demonstration could benefit the review process
and readers’ understanding of the procedures.

Sharing and communicating

Above, we discussed using R Markdown, R package stan-
dards, and other R resources for creating research products.
The next step is sharing and communicating these products.
When the products are created as suggested above, vertical
facilitates sharing the entire project as an R package for easy
access to the data and functions, as a version controlled repos-
itory for the project’s source code, and as a website, where
the components can be viewed in their final format.

Sharing the source code with version control

The core of our proposal is that all project materials are stored
in one directory on the user’s local filesystem. When version
control, such as Git, is enabled in this directory, the entire
project can be seamlessly shared with others through online
platforms such as GitHub, GitLab, and OSF. Version control
systems provide filesystems with additional functioning for
keeping track of files’ versions, improved options for collab-
orating, and seamless integration with online collaboration
platforms. For example, old versions of manuscripts are re-
tained in the project’s history. However, the details are outside
our scope, and we refer readers to Vuorre & Curley (2018).
By default, vertical projects enable Git for new projects.

Because of the integration between Git(Hub) and one’s lo-
cal filesystem, users should primarily interact with Git(Hub).
However, for long-term preservation, users should also link
the project’s GitHub repository to OSF. This can be done
through the “Settings” page on an OSF project’s page. Then,
one can create an OSF registration of that project, which
preserves the GitHub repository’s current status on OSF per-
manently. This way, users gain both GitHub’s convenience
and OSF’s long-term preservation.

Sharing the project as a website

An additional benefit of the R package organizing principles
is that the entire project can be easily showcased as a website
(see Figure 4). The website is compiled by pkgdown (Wick-
ham & Hesselberth, 2020) (click “Addins” -> “Build Vertical”

in RStudio), which is automatically included with vertical
projects. For instructions on customizing the website, see
https://pkgdown.r-lib.org/.

Building a vertical project as shown above creates the website
in the docs folder, from where it can be viewed. During
this process, all the R Markdown files within the project are
evaluated, ensuring that all analyses, and thus products, are up
to date and use the same data in the same computational envi-
ronment. The website is easily made available on the internet
by integrating the project with a GitHub repository (Vuorre
& Curley, 2018), and then enabling GitHub pages under the
repository’s settings. See https://crumplab.github.io/vertical/
for an example.

Sharing as an R Package

If the project contains R functions, data, and documentation
following the R package standard, then others can install the
package on their computers for fast access to the data and
functions from R. Again, integrating the project with GitHub
is beneficial, because then others can install the package from
GitHub using the devtools package, as was shown above in
how to install vertical. We recommend sharing most data
packages through GitHub (as discussed here), rather than the
official CRAN channel. Sharing as an R package is very con-
venient for other R users, as any packaged data and functions
are immediately available for use, natively in R, after package
installation. We expand on the extended benefits of using R
packages for transparency and reproducibility in the general
discussion.

Reproducibility

It is not uncommon to discover breaking changes in pre-
viously working code as a result of updates to a computa-
tional environment (e.g., a new language version or library
dependency). As a result, an important component of com-
putational reproducibility is specifying the (software) envi-
ronment in which the computations were done, or should
be done. In general, there is a continuum of static to dy-
namic approaches to this problem. A static approach could
be a list of the requirements for the computational envi-
ronment; whereas, a more dynamic approach could be a
website or other container that actively runs the required
environment (e.g., cloud computing tools such as Binder
(https://mybinder.org/), CodeOcean (https://codeocean.com/),
or RStudio Cloud (https://rstudio.cloud/)).

For simplicity, we adopt R packages as a robust static solution.
For example, an R package’s metadata in the DESCRIPTION
file can and should include the R packages and their versions
that are required for the project. This provides a clear and
standardized location for declaring the computational environ-
ment necessary to run the code in the project. Conveniently,
end users can opt to install the package with dependencies,

https://pkgdown.r-lib.org/
https://crumplab.github.io/vertical/
https://mybinder.org/
https://codeocean.com/
https://rstudio.cloud/


RESEARCH PRODUCTS AS R PACKAGES 7

Figure 4. Research assets from a vertical project displayed on a website. The navigation tab bar on the top links to the content
pages depicted in the body of the webpage.

which automatically installs libraries listed in the DESCRIP-
TION file. However, even though the DESCRIPTION may
describe the necessary computational environment, an end
user may have to take additional steps to create it themselves
(e.g., installing R on their computers). Nevertheless, this
static approach is not incompatible with dynamic approaches,
and advanced users could conceivably adapt vertical websites
to link to cloud computing environments that preserve and
execute project scripts.

General Discussion

We presented vertical, a stack of R tools for a single-platform
solution for creating, curating, and communicating psycho-
logical research projects in a reproducible manner. It might
seem that the benefits of this approach apply only to R users.
We believe this is not the case; the workflow creates a single
repository that includes all the research products related to
a project, which can then be viewed as a public (or private,
if desired) website and source code repository. Of course,
to get the most out of the proposal, some R use is required.
However, any standardized computational procedure assumes
some computational environment, and our choice of R is natu-
ral due to its already widespread adoption in the psychological
researcher community. Furthermore, by requiring raw data
inclusion, our proposal does not strictly require using R. And,
the software we have discussed, RStudio, works well with

other languages, including JavaScript, Python, and C++.

Comparison to other approaches

We are not the first to recommend some form of standardiza-
tion of workflows and procedures within psychology. First,
Psych-DS is a collaborative project that aims to “promote the
adoption of good practices in the management of scientific
data” and “create a machine-readable format for these datasets
that can support tools for analysis, discovery, and prepara-
tion of datasets in psychology” (https://github.com/psych-
ds/psych-DS). Our suggestion is directly compatible with
that effort, insofar as the R package standard doesn’t require
any special format from the raw data. In fact, future work
might bring these two approaches together to inform both
how the raw data should be formatted (Psych-DS), and how
research products based on that raw data could best be curated
and shared (present work).

There are also at least two other R packages designed to
help researchers organize their workflows and facilitate re-
producibility and data/code sharing. We highlight these pack-
ages here, while also discussing their similarities and dif-
ferences to our approach. workflowr is an R package that
makes it easy to create version controlled and well-organized
repositories of research materials, and share them as web-
sites on GitHub (Blischak, Carbonetto, and Stephens (2019);
https://github.com/jdblischak/workflowr). The workflowr R

https://github.com/psych-ds/psych-DS
https://github.com/psych-ds/psych-DS
https://github.com/jdblischak/workflowr


8 MATTI VUORRE1 & MATTHEW J. C. CRUMP2

package itself is quite mature, and provides helpful tools for
compiling many R Markdown documents sequentially, but has
a slightly different approach to our proposal, in that workflowr
does not itself provide much of a standardized organization
for the materials (although it does provide a template). Fur-
ther, the materials are not organized as an R package, as they
would be in the (extended) vertical approach. Additionally,
workflowr does not easily incorporate other types of materials
(manuscripts, slides, posters, experiments) in the resulting
website, unlike vertical. However, it may be slightly easier to
use otherwise, for the many useful functions that it provides.

Another approach is contained in the rrtools R package
(Marwick, Boettiger, and Mullen (2018); https://github.com/

benmarwick/rrtools), which, unlike workflowr but like our
approach, centers on the R package architecture. Addition-
ally, rrtools helps set up a Docker container and continuous
integration services for the project, both tools that we hope
become more widely adopted in the future. However, it does
not help users set up other important research materials as
part of the project’s materials, such as slides and experiments,
nor does it help users share their projects as websites.

More generally, however, tools and descriptions, such as
Psych-DS, rrtools, vertical, and workflowr are pointing to
the same important and general idea: Psychological sciences
would benefit from standardizing, as much as possible, the
ways in which computational work is curated. We think that
these tools and principles are in their infancy, and their im-
portance is only now being recognized. Therefore, we expect
these tools to evolve and mutate to best suit the practical
researchers’ needs, and hope that our suggestion provides
some insight to how these tools might work in the future.

Validating research assets

Our suggestion has wider implications for research trans-
parency and reproducibility. Consider the implied truth claims
associated with any peer-reviewed manuscript. The act of
publishing can be seen as a validity assertion: that the truth
claims made by the authors are verifiably true, or more weakly
that the research assets are verifiable. Unlike a set of conclu-
sions from premises that may be tested for logical validity,
research conclusions and claims are not as easily scrutinized
and tested. Reviewers trust that methods and results were as
written when assets can not be verified directly. Sharing in
the manner discussed here would facilitate scrutinizing and
testing research projects, and thus potentially increase the
reliability of the resulting scientific products.

Furthermore, organizing research assets in the manner dis-
cussed here allows computations to be formally tested, a pro-
cess referred to as unit testing in software engineering. It is
the practice of verifying that functions perform as intended in
a variety of cases. We make a loose analogy between building

a vertical project and unit testing. Building is a call to compile
individual components of the project. If a user adheres to the
vertical workflow, then R must be able to perform all of the
scripted operations. Successfully building a vertical project
is loosely analogous to performing unit tests that confirm
and validate the process of asset creation. So, compiling a
project is a test of the research project and verification its
assets. Other researchers can perform the same verification,
if the project’s source is shared. We note that vertical does
not conduct proper unit tests on functions included in an R
package. However, because these projects are R packages,
proper unit tests can be easily included (see Wickham, 2011).

Collaborating with vertical

Software developers routinely use version control platforms,
such as GitHub and GitLab to coordinate software develop-
ment across a team of collaborators (see, Vuorre & Curley,
2018). We recognize that scientific research is not software de-
velopment. However, some components of the research work-
flow readily conform to the software development model—
e.g., developing experiments and data analyses—and as such
stand to benefit from borrowing best practices and tools from
that domain.

Research projects can be hosted on GitHub throughout the
lifespan of the project to make use its collaboration tools.
With this in mind, vertical suggests using Git (along with its
online platforms). For example, we used GitHub as a collabo-
ration tool to create vertical and to write this manuscript (us-
ing papaja). Among other features, Git provides functionality
similar to track changes in Microsoft Word that allow contri-
butions to be reviewed, accepted, and modified. It makes this
process robust even when many collaborators are involved.
We also made extensive use of the GitHub issues tab, which is
normally used to report bugs or feature requests to a software
developer. Many users may find this feature very useful. In
our case, we opened issues for discussion and then closed
the issues once they were addressed. A side-effect is that the
GitHub issues tab, and the Git history, may double as a project
development narrative, or a lab journaling system preserving
issues and solutions for posterity.

Teaching R with vertical

vertical may be most beneficial to users who already use R.
Although our website tutorial is intended for R beginners,
it is not a tutorial on the R language. Nevertheless, verti-
cal could be used for pedagogical purposes, like a museum
guide offering an orientation to collections in a large museum.
For example, an R programming class for psychologists (or
statistics/methods course using R) could be structured around
the components of a vertical project, such as how to program
functions, import and analyse data, write manuscripts, posters,
slide decks, and websites in R. Moreover, vertical provides a

https://github.com/benmarwick/rrtools
https://github.com/benmarwick/rrtools


RESEARCH PRODUCTS AS R PACKAGES 9

convenient and well-organized workflow for students to save
their work as they learn each component.

Extending vertical

vertical is a modular open-source tool that can be extended
by anyone. We included modules that we think are common,
and can incorporate new modules as they are identified and
suggested. Users can fork the vertical source code on GitHub,
make suggested changes, and submit pull requests for review
and inclusion.

Future work should also identify commonalities between our
suggestion, and other related work such as rrtools (Marwick
et al., 2018) and workflowr (Blischak et al., 2019), and poten-
tially work to unify these approaches to a more comprehensi-
ble and user-friendly tool for research project organization.

FAIR

To maximize the reuse potential of open data and support
“discovery through good data management”, Wilkinson et al.
(2016) proposed the FAIR (Findable, Accessible, Interopera-
ble, Reusable) guiding principles. Below, we describe how a
vertical workflow targets FAIR principles and facilitates ac-
cessibility and data reanalyses (FAIR principles paraphrased
from, Wilkinson et al., 2016; and Martone et al., 2018)

Findable data are discoverable through persistent identifiers
(e.g., permanent URLs / DOIs):

• Projects are accessible through the internet at OSF or
GitHub
• DOIs for a vertical project can be minted through OSF

or Zenodo

Accessible data is available to approved researchers (e.g.,
anyone or lab members only) through a standardized commu-
nications protocol (e.g., Internet):

• Projects on GitHub and OSF can be made accessible to
a specific set of users, or completely private, if desired
• Most data sharing guides emphasize manually upload-

ing heterogeneous data files to a repository (e.g., OSF).
R packages allow that, but also facilitate programmatic
access to the data, and therefore are more accessible
than methods relying on manual transfer of files

Interoperable data is described (via metadata and file orga-
nization) in a common, openly available, non-proprietary
language:

• R packages describe a strict organization of source files,
resulting in a software product that is directly usable in
a programming environment
• R packages describe a common language for document-

ing the data, its use, and dependencies

• R package (meta)data is human- and machine-readable
and in a non-proprietary format
• Data wrapped in an R package is accessible in other

programming environments due to standardized format-
ting

Reusable data are richly described and licensed to facilitate
reuse:

• R packages are described in a standard format
• R packages facilitate use of appropriate licenses

Conclusion

Borrowing standards and best practices from software devel-
opment, such as the R package standard discussed here, may
serve to dramatically improve reproducibility. By organizing
research assets in a standard format, their reuse will be less
time consuming and error-prone. Standard formats also facil-
itate large-scale meta-scientific investigations (Gorgolewski
et al., 2016), and inclusion of data sets for meta-analyses.
More generally, in addition to the convenience of a single-
platform vertical workflow, adopting R standards during asset
creation demands some amount of attention on how research
products are curated, stored, documented, and shared. Draw-
ing attention to these details may also serve to increase the
reproducibility of our work.

Author Contributions

MV and MC jointly generated the idea for the manuscript;
MV wrote the first draft, which both authors then critically
edited. vertical was programmed by MC and MV. Both au-
thors approved the final submitted version of the manuscript.

Open Practices Statement

The source materials of this manuscript are available at
https://github.com/CrumpLab/vertical.

References

Aust, F. (2019). Citr: ’RStudio’ add-in to insert mark-
down citations. Retrieved from https://CRAN.R-project.org/

package=citr

Aust, F., & Barth, M. (2020). papaja: Create APA
manuscripts with R Markdown. Retrieved from https://github.
com/crsh/papaja

Blischak, J. D., Carbonetto, P., & Stephens, M. (2019). Creat-
ing and sharing reproducible research code the workflowr
way. F1000Research, 8, 1749. https://doi.org/10.12688/

f1000research.20843.1

Crump, M. J. C. (2019). Jspsychr: Templates and functions
for writing and running jspsych experiments from r-studio.
Retrieved from https://github.com/CrumpLab/jspsychr

https://github.com/CrumpLab/vertical
https://CRAN.R-project.org/package=citr
https://CRAN.R-project.org/package=citr
https://github.com/crsh/papaja
https://github.com/crsh/papaja
https://doi.org/10.12688/f1000research.20843.1
https://doi.org/10.12688/f1000research.20843.1
https://github.com/CrumpLab/jspsychr


10 MATTI VUORRE1 & MATTHEW J. C. CRUMP2

Crump, M. J. C., & Vuorre, M. (2020). Vertical: Repro-
ducible worfklow for psychological science research asset
creation and communication. Retrieved from https://github.
com/CrumpLab/vertical

De Leeuw, J. R. (2015). JsPsych: A javascript library for
creating behavioral experiments in a web browser. Behavior
Research Methods, 47(1), 1–12.

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R.
C., Das, S., Duff, E. P., . . . Poldrack, R. A. (2016). The
brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments. Scientific
Data, 3, 160044. https://doi.org/10.1038/sdata.2016.44

Hardwicke, T. E., Mathur, M. B., MacDonald, K., Nilsonne,
G., Banks, G. C., Kidwell, M. C., . . . Frank, M. C. (2018).
Data availability, reusability, and analytic reproducibility:
Evaluating the impact of a mandatory open data policy at
the journal Cognition. Royal Society Open Science, 5(8),
180448. https://doi.org/10.1098/rsos.180448

Houtkoop, B. L., Chambers, C., Macleod, M., Bishop, D. V.
M., Nichols, T. E., & Wagenmakers, E.-J. (2018). Data Shar-
ing in Psychology: A Survey on Barriers and Preconditions.
Advances in Methods and Practices in Psychological Science,
1(1), 70–85. https://doi.org/10.1177/2515245917751886

Klein, O., Hardwicke, T. E., Aust, F., Breuer, J., Daniels-
son, H., Mohr, A. H., . . . Frank, M. C. (2018). A Practical
Guide for Transparency in Psychological Science. Collabra:
Psychology, 4(1), 20. https://doi.org/10.1525/collabra.158

Lindsay, D. S. (2017). Sharing Data and Materials in Psy-
chological Science. Psychological Science, 28(6), 699–702.
https://doi.org/10.1177/0956797617704015

Martone, M. E., Garcia-Castro, A., & VandenBos, G. R.
(2018). Data sharing in psychology. American Psychologist,
73(2), 111–125. https://doi.org/10.1037/amp0000242

Marwick, B., Boettiger, C., & Mullen, L. (2018). Packag-
ing data analytical work reproducibly using R (and friends).
https://doi.org/10.7287/peerj.preprints.3192v2

Morey, R. D., Chambers, C. D., Etchells, P. J., Harris, C. R.,
Hoekstra, R., Lakens, D., . . . Zwaan, R. A. (2016). The Peer
Reviewers Openness Initiative: Incentivizing open research
practices through peer review. Royal Society Open Science,
3(1), 150547. https://doi.org/10.1098/rsos.150547

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bow-
man, S. D., Breckler, S. J., . . . Yarkoni, T. (2015). Promoting
an open research culture. Science, 348(6242), 1422–1425.
https://doi.org/10.1126/science.aab2374

R Core Team. (2020). R: A language and environment for sta-
tistical computing. Vienna, Austria: R Foundation for Statisti-
cal Computing. Retrieved from https://www.R-project.org/

Rouder, J. N. (2016). The what, why, and how of born-
open data. Behavior Research Methods, 48(3), 1062–1069.
https://doi.org/10.3758/s13428-015-0630-z

Rouder, J. N., Haaf, J. M., & Snyder, H. K. (2019). Min-
imizing Mistakes in Psychological Science. Advances in
Methods and Practices in Psychological Science, 2(1), 3–11.
https://doi.org/10.1177/2515245918801915

RStudio Team. (2016). RStudio: Integrated Development
Environment for R. Boston, MA: RStudio, Inc. Retrieved
from http://www.rstudio.com/

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi,
P., Aust, F., Awtrey, E., . . . Nosek, B. A. (2018). Many
Analysts, One Data Set: Making Transparent How Varia-
tions in Analytic Choices Affect Results. Advances in Meth-
ods and Practices in Psychological Science, 1(3), 337–356.
https://doi.org/10.1177/2515245917747646

Thorne, W. B. (2019). Posterdown: An r package built to gen-
erate reproducible conference posters for the academic and
professional world where powerpoint and pages just won’t cut
it. Retrieved from https://github.com/brentthorne/posterdown

Vanpaemel, W., Vermorgen, M., Deriemaecker, L., & Storms,
G. (2015). Are We Wasting a Good Crisis? The Availability
of Psychological Research Data after the Storm. Collabra:
Psychology, 1(1), Art. 3. https://doi.org/10.1525/collabra.13

Vuorre, M., & Curley, J. P. (2018). Curating Research Assets:
A Tutorial on the Git Version Control System. Advances in
Methods and Practices in Psychological Science, 1(2), 219–
236. https://doi.org/10.1177/2515245918754826

Wicherts, J. M., Borsboom, D., Kats, J., & Molenaar, D.
(2006). The poor availability of psychological research
data for reanalysis. American Psychologist, 61(7), 726–728.
https://doi.org/10.1037/0003-066X.61.7.726

Wickham, H. (2011). Testthat: Get started with testing.
The R Journal, 3, 5–10. Retrieved from https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf

Wickham, H. (2015). R Packages: Organize, Test, Document,
and Share Your Code. "O’Reilly Media, Inc.". Retrieved from
http://r-pkgs.had.co.nz/

Wickham, H., & Hesselberth, J. (2020). Pkgdown: Make
static html documentation for a package. Retrieved from
https://CRAN.R-project.org/package=pkgdown

Wickham, H., Hester, J., & Chang, W. (2020). Devtools:
Tools to make developing r packages easier. Retrieved from
https://CRAN.R-project.org/package=devtools

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Ap-
pleton, G., Axton, M., Baak, A., . . . Mons, B. (2016).

https://github.com/CrumpLab/vertical
https://github.com/CrumpLab/vertical
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1098/rsos.180448
https://doi.org/10.1177/2515245917751886
https://doi.org/10.1525/collabra.158
https://doi.org/10.1177/0956797617704015
https://doi.org/10.1037/amp0000242
https://doi.org/10.7287/peerj.preprints.3192v2
https://doi.org/10.1098/rsos.150547
https://doi.org/10.1126/science.aab2374
https://www.R-project.org/
https://doi.org/10.3758/s13428-015-0630-z
https://doi.org/10.1177/2515245918801915
http://www.rstudio.com/
https://doi.org/10.1177/2515245917747646
https://github.com/brentthorne/posterdown
https://doi.org/10.1525/collabra.13
https://doi.org/10.1177/2515245918754826
https://doi.org/10.1037/0003-066X.61.7.726
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
http://r-pkgs.had.co.nz/
https://CRAN.R-project.org/package=pkgdown
https://CRAN.R-project.org/package=devtools


RESEARCH PRODUCTS AS R PACKAGES 11

The FAIR Guiding Principles for scientific data manage-
ment and stewardship. Scientific Data, 3, 160018. https:
//doi.org/10.1038/sdata.2016.18

Xie, Y., Allaire, J., & Grolemund, G. (2018). R mark-
down: The definitive guide. Boca Raton, Florida: Chap-
man; Hall/CRC. Retrieved from https://bookdown.org/yihui/

rmarkdown

Yee, S. J. W., & Debbie. (2017). Why You Should Become a
UseR: A Brief Introduction to R. APS Observer, 30(3). Re-
trieved from https://www.psychologicalscience.org/observer/
why-you-should-become-a-user-a-brief-introduction-to-r

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown
https://www.psychologicalscience.org/observer/why-you-should-become-a-user-a-brief-introduction-to-r
https://www.psychologicalscience.org/observer/why-you-should-become-a-user-a-brief-introduction-to-r

	Introduction
	R Packages
	Functions
	Data

	Reproducible research projects with vertical
	Reproducible documents with R Markdown
	Data analysis
	APA manuscripts
	Posters
	Slides
	Other materials
	Experiments

	Sharing and communicating
	Sharing the source code with version control
	Sharing the project as a website
	Sharing as an R Package
	Reproducibility

	General Discussion
	Comparison to other approaches
	Validating research assets
	Collaborating with vertical
	Teaching R with vertical
	Extending vertical
	FAIR

	Conclusion
	Author Contributions
	Open Practices Statement
	References

